
8. MATERIAL MODELLING 

Abstract —A novel three-dimensional numerical modeling 
technique for solving problems involving high temperature 
superconducting materials is presented. This technique is 
implemented in the control volume method using the 
magnetic vector potential and the electric scalar potential 
formulations (A-ϕ). This technique is based on the evaluation 
of surface integrals instead of volume ones for the divergence 
terms. A power-law relationship is used to model the 
nonlinear conductivity characteristic of superconductors. The 
simulation results are compared with experiments done by 
Foo and Moon [1,2] concerning the vertical and the lateral 
levitation forces created between a permanent magnet and a 
high temperature superconducting bulk.  

I. INTRODUCTION 
THE superconducting levitation is based on the 

interaction between a permanent magnet (PM) and a high 
temperature-superconductor (HTSC). Due to its unique 
characteristics, it has demonstrated tremendous potential 
for several applications such as the magnetic levitation, the 
noncontact transport, and the flywheel energy storage, etc. 
In connection with these applications, it is very important 
to calculate precisely the levitation forces between the PM 
and the HTSC bulk. Several works of 3D modeling are 
were proposed for the calculation of these forces in vertical 
and lateral cases, where the finite elements method (FEM) 
[3] and the control volume method (CVM) [4] are 
generally used for the resolution of the equations of the 
treated physical phenomena. In our previous works [4], we 
have used the CVM for a structured grid and we have 
proposed a new method for treating correctly the rotational 
volume terms of electromagnetic equations which obeys to 
a conservation rotational law. The major problem of the 
CVM is related to its structured grid which does not enable 
us to model devices having complex geometries. For this 
reason, we propose in this paper a novel technique which 
can be used for unstructured grid and do not need any 
special treatment of rotational volume terms. This version 
of CVM consists in using the control volumes grid build by 
connecting the gravity centers of nearby elements (Fig.1) 
of an initial mesh made of unstructured triangular prisms. 
This technique can also be applied to structured grids. In 
this technique, we evaluate the surface integrals instead of 
the volume integrals of divergence terms. A power-law 

relationship is used to model the nonlinear conductivity 
characteristic of superconductors. 

II.  BASIC FORMULATION  
When a PM moves above a superconductor, the magnetic 

field of the PM penetrates the superconductor creating 
shielding currents or fluxoids in it. In this case, magnetic 
forces are produced by the interaction between the 
shielding current and the applied magnetic field. These 
forces can be evaluated by the Lorentz formula. For the 
calculation of the external magnetic field Bm, a PM with a 
magnetic moment m has been modeled by succession of 
loops with surface current density JPM = m∧n [1]. By using 
the Biot-Savart law, Bm is calculated in the whole domain. 
To evaluate the current density J inside the HTSC bulk, the 
(A-ϕ) formulation with the Coulomb gauge is used:  
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The relation between the electric field E and the current 
density J is non nonlinear. The effective conductivity of the 
superconductor )(Eσ  can be expressed by a power-law [3]:  
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The parameters Jc and n are derived from the measured 
current-voltage characteristics of the sample. 

 
 

Fig. 1. Novel control volume scheme. 
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III. CONTROL VOLUME METHOD (CVM) 

The CVM consists in dividing the domain into a 
number of subdomains or control volumes such as there is 
one control volume Dp surrounding each node P. The new 
scheme of the control volume Dp is displayed in Figure 1. 
Dp is limited by several facets related to neighboring nodes 
of P. So the system of equations (2) will be integrated over 
the control volume Dp  as follows: 
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By using the theorem of Ostrogradski, the divergence 
volume integrals of (4) are transformed into surface 
integrals. For example, for the Ax component, one obtains:  
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The right hand side terms in equation (5) represent the flux 
of the gradient magnetic potential Ax through the lateral 
facets and the top and bottom facets. To calculate top and 
bottom terms, first order approximation is used. For 
example, the flux in the top facet is: 
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To calculate the flux in the lateral facets, the derivative of 
the magnetic potential Ax is expressed in referential (R’) 
defined by (ξ,η) coordinates. The passage from the 
referential (R’) to the referential (R) defined by (x,y) 
coordinates is obtained by the Jacobian matrix. So, the flux 
in the lateral facets can be expressed as:  
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Therefore, the obtained coefficients  akEi  describe the 
physical and geometrical properties of the control volume 
or cell surrounding each node. All integral terms resulting 
from system (4) are evaluated. An algebraic system of 
equations is constructed with appropriate boundary 
conditions and is expressed as: 
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The column matrix [ ]VA   ;  denotes the nodal values of the 
magnetic vector and electric scalar potentials and [ ]VA &&   ;  
their time derivatives. [ ]0J

S
 ;  represents the source 

column vector of the PM excitation. The global CVM 
matrices [M] and [N] are non symmetric and nonlinear 
according to the definition of conductivity given by (3). At 
each step, the Crank-Nicolson method is employed to 
integrate the algebraic system (8) which is solved 
iteratively until convergence is reached. 

IV. RESULTS 

The developed models and simulation programs are used 
to evaluate the vertical and lateral forces acting on the PM 
described in the experiments done by Foo and Moon [1,2] 
as shown in Figures 2 and 3, for two cooling conditions ; 
with field cooling (FC) and zero field cooling (ZFC). Good 
agreements for both lateral and vertical forces calculation 
are obtained compared to experimental data. The absolute 
maximum errors are 0.79 N for the vertical displacement 
and 0.19 N for the lateral displacement. 
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Fig. 2. Vertical force as a function of vertical displacement 

at ZFC condition. 
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Fig. 3. Lateral force as a function of lateral displacement 

at ZFC and at FC conditions  
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